A Rational Krylov Method for Model Order Reduction
نویسنده
چکیده
An algorithm to compute a reduced-order model of a linear dynamic system is described. It is based on the rational Krylov method, which is an extension of the shift-and-invert Arnoldi method where several shifts (interpolation points) are used to compute an orthonormal basis for a sub-space. It is discussed how to generate a reduced-order model of a linear dynamic system, in such a way that the Laplace domain transfer function of the reduced order model interpolates the Laplace domain transfer function of the dynamic system in the interpolation points to appropriate degree. It is also discussed how to compute an error estimate of the Laplace domain transfer function of the reduced-order model. Further it is shown how to create a passive reduced-order model in an eecient way by congruence transformation of a dynamic system that models a RLC circuit. The rational Krylov method is applied to several examples in circuit theory.
منابع مشابه
Iterative Dual Rational Krylov and Iterative SVD-Dual Rational Krylov Model Reduction for Switched Linear Systems
In this paper, we propose two models reduction algorithms for approximation of large-scale linear switched systems. We present at first the iterative dual rational krylov approach, that construct a union of krylov subspaces. The iterative dual rational Krylov is low in cost, numerical efficient but the stability of reduced system is not always guaranteed. In the second part we present, the iter...
متن کاملModel Reduction for Time-Varying Descriptor Systems Using Krylov-Subspaces Projection Techniques
We will present a projection approach for model reduction of linear time-varying descriptor systems based on earlier ideas in the work of Philips and others. The idea behind the proposed procedure is based on a multipoint rational approximation of the monodromy matrix of the corresponding differential-algebraic equation. This is realized by orthogonal projection onto a rational Krylov subspace....
متن کاملProjection-Based Model Reduction for Time-Varying Descriptor Systems Using Recycled Krylov Subspaces
We will present a projection approach for model reduction of linear time-varying descriptor systems based on earlier ideas in the work of Philips and others. The idea behind the proposed procedure is based on a multipoint rational approximation of the monodromy matrix of the corresponding differential-algebraic equation. This is realized by orthogonal projection onto a rational Krylov subspace....
متن کاملKrylov projection framework for Fourier model reduction
This paper analyzes the Fourier model reduction (FMR) method from a rational Krylov projection framework and shows how the FMR reduced model, which has guaranteed stability and a global error bound, can be computed in a numerically efficient and robust manner. By monitoring the rank of the Krylov subspace that underlies the FMR model, the projection framework also provides an improved criterion...
متن کاملA Parametric Model Order Reduction Method Using the Loewner Framework and the Iterative Rational Krylov Algorithm
Linear dynamical systems play a large role in predicting the behavior of physical phenomena, and computational efficient methods of forming solutions to these systems are of great interest. These systems often depend on a set of physical parameters, and it can be the case that solutions are required for many different sets of parameter values. Systems of this nature can also be of large dimensi...
متن کامل